this post was submitted on 29 Nov 2024
83 points (100.0% liked)

Ask Science

9287 readers
32 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] thebardingreen@lemmy.starlightkel.xyz 35 points 3 months ago* (last edited 3 months ago) (8 children)

Impactors are actually a significant hazard to O'Neill cylinders. Unless your megastructure has some well designed mitigation strategies, it's doomed.

That's not an answer to your question, but we have to take it into account in order to answer it.

One of the most practical suggestions for such mitigation is an outer shell that can absorb most impacts, combined with some kind of active countermeasures that can shoot down impactors big enough or with a high enough relative velocity to pose a threat that could potentially penetrate the outer shell.

Most likely, the outer shell wouldn't rotate like the inner shell. There are a number of reasons for this, one of them being it's easier to dock with the thing, another being it's easier to repair the outer shell without having to deal with it having spin gravity that is flinging your repair equipment off into the vacuum of space. There are a number of proposed solutions for traversing from a rotating inner shell to a non-rotating outer shell and back again.

In this case, there's going to be a layer of vacuum in between the outer shell and the inner shell. That means the answer to your question is "totally silent". A meter wide asteroid can crash into your outer shell at 10,000 mph and the inhabitants of your inner shell won't hear a peep. Anyone in or on the outer shell would feel or hear something, depending on a whole set of factors from the material the shell is made of to how far away the impact is to whether or not they're in a space suit.

But let's say you have an O'Neill cylinder without an outer shell (IMHO, if you're going to go through the immense effort to build one of these things, this is a bad idea unless you have some amazing hypothetical deflector shield technology we have no idea how to build) and let's say an impactor gets through your deflector shield. Let's additionally assume that your shell is made out of some kind of meta alloy composed mostly of nickel iron and carbon nanotubes. Something that has the tensile strength to support a 30 km long structure (for the curious, the physics that governs this is exactly the same as the physics that governs suspension bridges). Let's also assume there's around 200 feet of dirt and rock in between the shell and the people walking around on the inside of your space habitat.

The average velocity of a random meteor that might hit the International Space Station is 50 to 100 KM per second. Most micrometeorites that hit the ISS are basically grains of dust and are too small to produce an audible sound. A number of years ago, something slightly bigger hit a window and left some visible damage. IIRC, no one heard it, they just noticed the damage after the fact.

For an asteroid impact to be audible in the environment we've described, it would have to be a significant impactor, big and fast enough to cause significant damage. It's quite possible that the impact could put a hole in the outer shell where dirt starts getting sucked out into the vacuum of space, and the inhabitants still wouldn't hear a damn thing. They might notice a sinkhole forming pretty soon, and that would be no good. (Especially because it means spin gravity is literally helping the vacuum of space to suck material out of the habitat).

If something hits the O'Neill cylinder loud enough for the inhabitants to hear it, in all probability, they have a really big problem.

[–] j4k3@lemmy.world 8 points 3 months ago (5 children)

I figure the double cylinders counter rotating will result in the more at-risk side of a habitable cylinder receiving considerable protection.

In my attempt at hard sci-fi, the interior primarily has the docking structure at one end and mountains at the other, the primary heat radiators are on the mountain side and extend along the length. The primary framing structure of the cylinders are packaged around the generation ship. Upon arrival the generation ship becomes the central hub of the primary habitat. The secondary cylinder is used for biological resources processing and buffering of the habitat's elemental cycles.

I still wonder of the sounds unique of such a place.

I also propose that there will be self replicating drones that are more akin to kilometers scale industrial complexes. Self replication is limited by time and limited synthetic intelligence requiring regular support, (so totally unable to make a paperclip universe). I imagine at that scale the gravitational interaction between the two bodies becomes a significant factor and would result in some sound. When does the Roche limit begin to become significant in very layperson terms?

I'm trying to stick to Dr O'Neill's original assumption of only using the engineering materials of the present. I'm making the assumption that the only major advancements are within biology and it basically becomes like computer code as the age of scientific discovery is mostly completed. Biology is the final technology to master and what enables environments with complete elemental cycles balance. The only remaining industrial processes are executed by the rep drones for maintenance and expansion of the habitat.

The drivers of expansion are specifically due to the era being over 400k years into the future when Sol is further into the red giant phase. Cislunar becomes the seat of humanity after we access the first m-type asteroid effectively and long before the story is set. Most of Earth's accessible resources will be exploited completely in less than 100k years. So that drives biology as a technology more than any other force.

I'm very interested in any plot holes I should look into in this basic layout.

[–] Techranger@infosec.pub 2 points 3 months ago

This sounds very similar to Arthur C. Clarke's Rama trilogy!

load more comments (4 replies)
load more comments (6 replies)