this post was submitted on 11 Jun 2025
77 points (84.7% liked)
Programming
20830 readers
406 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Machine energy, definitely not programmer energy ;)
I would argue that because C is so hard to program in, even the claim to machine efficiency is arguable. Yes, if you have infinite time for implementation, then C is among the most efficient, but then the same applies to C++, Rust and Zig too, because with infinite time any artificial hurdle can be cleared by the programmer.
In practice however, programmers have limited time. That means they need to use the tools of the language to save themselves time. Languages with higher levels of abstraction make it easier, not harder, to reach high performance, assuming the abstractions don’t provide too much overhead. C++, Rust and Zig all apply in this domain.
An example is the situation where you need a hash map or B-Tree map to implement efficient lookups. The languages with higher abstraction give you reusable, high performance options. The C programmer will need to either roll his own, which may not be an option if time Is limited, or choose a lower-performance alternative.
I understand your point but come on, basic stuff has been implemented in a thousand libraries. There you go, a macro implementation
And how testable is that solution? Sure macros are helpful but testing and debugging them is a mess
I’m not saying you can’t, but it’s a lot more work to use such solutions, to say nothing about their quality compared to std solutions in other languages.
And it’s also just one example. If we bring multi-threading into it, we’re opening another can of worms where C doesn’t particularly shine.
Not sure I understand your comment on multithreading. pthreads are not very hard to use, and you have stuff like OpenMP if you want some abstraction. What about C is not ideal for multithreading?
It’s that the compiler doesn’t help you with preventing race conditions. This makes some problems so hard to solve in C that C programmers simply stay away from attempting it, because they fear the complexity involved.
It’s a variation of the same theme: Maybe a C programmer could do it too, given infinite time and skill. But in practice it’s often not feasible.
Memory management, but that impacts stability/security instead of performance.