this post was submitted on 10 Oct 2023
66 points (92.3% liked)

Asklemmy

44978 readers
1878 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy ๐Ÿ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_[email protected]~

founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 4 points 1 year ago

I took it from an information theory perspective:

  1. Turing machines can compute anything defined as an algorithm, and cannot compute anything that cannot be defined as an algorithm. This is why, for example, computers can't generate random numbers (only deterministic streams of pseudorandom numbers using some starting seed). Also all Turing machines are equivalent -- they can all run the same set of algorithms given sufficient memory and will produce the same result.
  2. By Bell's inequality, we know that certain events (I use quantum-tunneling) are non-deterministic and cannot be predicted by an algorithm (at better than chance, given infinite computing power, infinite time, and perfect knowledge of the system). Note though I'm an amateur quantum mechanic at best :D
  3. Therefore if the universe is a simulation running on a Turing-machine, they would have to either halt, use pseudorandom numbers (which I can detect with finite but large CPU power and finite but large time), or sample their own random numbers from a local entropy source.

This way I try to minimize assumptions about physical laws in the Universe 'upstairs'. One interesting property of this is that if the universe upstairs is also simulated, then if it samples local entropy it just passes the problem upward :D

I do work with the assumption that a Turing machine runs any simulation, Matrix-style. Not some underlying physical process that just so happens to simulate a Universe, and also put entropy in all the right places whenever I look.

This is all just for amusement though. If the Universe was really running on a Turing machine, we'd see way more ads (drink your ovaltine encoded in pi?). Also the current design is really suboptimal what with all the entropy. No way it would run for 13-point-whatever billion years. I refuse to believe that our hypothetical extradimensional programmers are simultaneously that smart and that dumb :P