this post was submitted on 28 Apr 2024
9 points (90.9% liked)

Ask Math Problems

89 readers
1 users here now

founded 10 months ago
MODERATORS
 

Are there any known right triangles that have integer side lengths and rational angles? If not, has it been proven that none exist?

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 3 points 9 months ago

I bit late but i i think it is proven there is no solutions, except for the special case 0° and side lengths 1, 1 and 0. Let us consider the triangle with a²+b²=c² and a = c sin(pi q) where q is the angle as a fraction of half a circle. So you are looking for a solution where a, b, c are integer and q is rational. So we first need to find a rational value for q where sin(pi q) is rational. According to https://math.stackexchange.com/questions/87756/when-is-sinx-rational#87768 this happens only for the well known case of 30°, so q=1/6 and a/c=1/2. However, in this case b=c/2 × sqrt(3) which is irrational, so with this angle we can never create integer side length.