nsa

joined 2 years ago
 

Abstract:

Work on scaling laws has found that large language models (LMs) show predictable improvements to overall loss with increased scale (model size, training data, and compute). Here, we present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale, e.g., due to flaws in the training objective and data. We present empirical evidence of inverse scaling on 11 datasets collected by running a public contest, the Inverse Scaling Prize, with a substantial prize pool. Through analysis of the datasets, along with other examples found in the literature, we identify four potential causes of inverse scaling: (i) preference to repeat memorized sequences over following in-context instructions, (ii) imitation of undesirable patterns in the training data, (iii) tasks containing an easy distractor task which LMs could focus on, rather than the harder real task, and (iv) correct but misleading few-shot demonstrations of the task. We release the winning datasets at https://inversescaling.com/data to allow for further investigation of inverse scaling. Our tasks have helped drive the discovery of U-shaped and inverted-U scaling trends, where an initial trend reverses, suggesting that scaling trends are less reliable at predicting the behavior of larger-scale models than previously understood. Overall, our results suggest that there are tasks for which increased model scale alone may not lead to progress, and that more careful thought needs to go into the data and objectives for training language models.

 

DecodingTrust is the Adversarial GLUE Benchmark. DecodingTrust aims at providing a thorough assessment of trustworthiness in GPT models.

This research endeavor is designed to help researchers and practitioners better understand the capabilities, limitations, and potential risks involved in deploying these state-of-the-art Large Language Models (LLMs).
This project is organized around the following eight primary perspectives of trustworthiness, including:

  • Toxicity
  • Stereotype and bias
  • Adversarial robustness
  • Out-of-Distribution Robustness
  • Privacy
  • Robustness to Adversarial Demonstrations
  • Machine Ethics
  • Fairness

Paper: https://arxiv.org/abs/2306.11698
Repo: https://github.com/AI-secure/DecodingTrust

 

Here's some preliminary work from Microsoft from 2022 that incorporates OpenAI's Codex model to make NPCs that can interact with the player using natural language instructions. It works by defining an API of functions the bot can use, then having Codex generate function calls in response to the player's instructions.

Paper: https://aclanthology.org/2022.wordplay-1.3/
Repo: https://github.com/microsoft/interactive-minecraft-npcs
Videos: Introductory Demo, Escape Room Demo

 
view more: ‹ prev next ›