this post was submitted on 19 Jan 2025
7 points (88.9% liked)
Machine Learning | Artificial Intelligence
973 readers
2 users here now
Welcome to Machine Learning – a versatile digital hub where Artificial Intelligence enthusiasts unite. From news flashes and coding tutorials to ML-themed humor, our community covers the gamut of machine learning topics. Regardless of whether you're an AI expert, a budding programmer, or simply curious about the field, this is your space to share, learn, and connect over all things machine learning. Let's weave algorithms and spark innovation together.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Got it. Thanks so much for your help!! Still a lot to learn here.
Coming from a world of building software where things are very binary (it works or it doesn't), it's also really tough to judge how good is "good enough". There is a point of diminishing returns, and not sure at what point to say that it's good enough vs continuing to learn and improve it.
Really appreciate your help here tho.
No problem, happy to help. In a lot of cases, even direct methods couldn't reach 100%. Sometimes the problem definition, combined with just regular noise in you input, will mean that you can have examples that have basically the same input, but different classes.
In the blur-domain, for example, if one of your original "unblurred" images was already blurred (or just out of focus) it might look pretty indistinguishable from "blurred" image. Then the only way for the net to "learn" to solve that problem is by overfitting to some unique value in that image.
A lot of machine learning is just making sure the nets are actually solving your problem rather than figuring out a way to cheat.