It's imaginary numbers. Full stop. No debate about it. The idea of them is so wild that they were literally named imaginary numbers to demonstrate how silly they were, and yet they can be used to describe real things in nature.
Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try [email protected] or [email protected]
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
I'm studying EE in university, and have been surprised by just how much imaginary numbers are used
EE is absolutely fascinating for applications of calculus in general.
I didn't give a shit about calculus and then EE just kept blowing my mind.
I was gonna ask how imaginary numbers are often used but then you reminded me of EE applications and that's totally true.
I mean, quaternions are the weirder version of complex numbers, and they're used for calculating 3D rotations in a lot of production code.
There's also the octonions and (much inferior) Clifford algebras beyond that, but I don't know about applications.
Yeah but aren't quaternions basically just a weird subgroup of 2x2 complex matrices?
Would that make it less true? Complex numbers can be seen as a weird subgroup of the 2x2 real matrices. (And you can "stack" the two representations to get 4x4 real quaternions)
Furthermore, octonions are non-associative, and so can't be a subgroup of anything (although you can do a similar thing using an alternate matrix multiplication rule). They still show up in a lot of the same pure math contexts, though.
I just think complex vector spaces are a great place to stop your abstraction
Stopping while we're ahead? Never!
/s, but also I'm sort of in this picture.
Well who wants constraints anyway? The most inconvenient constraints in the wrong place can make certain things much more complicated to deal with... Now a nice, sensible normal Hilbert space, isn't that lovely?
I don't really get 'em. It seems like people often use them as "a pair of numbers." So why not just use a pair of numbers then?
They also have a defined multiplication operation consistent with how it works on ordinary numbers. And it's not just multiplying each number separately.
A lot of math works better on them. For example, all n-degree polynomials have exactly n roots, and all smooth complex functions have a polynomial approximation at every point. Neither is true on the reals.
Quantum mechanics could possibly work with pairs of real numbers, but it would be unclear what each one means on their own. Treating a probability amplitude as a single number is more satisfying in a lot of ways.
That they don't exist is still a position you could take, but so is the opposite.
I totally get your point, and sometimes it seems like that. Why not just use a coordinate system? Because in some applications the complex roots of equations is relevant.
If you square an imaginary number, it's no longer an imaginary number. Now it's a real number! That's not something you can accomplish with something like a pair of numbers alone.
Because the second number has special rules and a unit. It's not just a pair of numbers, though it can be represented through a pair of numbers (really helpful for computing).
As far as I know, matrices were a "pure math" thing when they were first discovered and seemed pretty useless. Then physicists discovered them and used them for all sorts of shit and now they're one of the most important tools in in science, engineering and programming.
Huge in 3d graphics and AI.
Strangest? Functional analysis, maybe. I understand it's used pretty extensively in quantum field theory, although I don't actually know firsthand.
That's a body of mathematics about infinite-dimensional spaces and the operations on them. Even more abstract ways of defining those operations exist and have come up as well, like in Tseirlson's problem, which recently-ish had a shock negative resolution stemming from quantum information theory.
There's constructions I find weirder yet, but I don't think p-adic numbers, for example, have any direct application at this point.
The invention of the number 0, the discovery of irrational numbers, or l the realization that base 60 math makes sense for anything round, including timekeeping.
60 was chosen by the Ancient Sumerians specifically because of its divisibility by 2, 3, 4, and 5. Today, 60 is considered a superior highly composite number but that bit of theory wouldn’t have been as important to the Sumerians and Babylonians as the simple ability to divide 60 by many commonly used factors (2, 3, 4, 5, 6, 10, 12, 15) without any remainders or fractions to worry about.
Imaginary numbers probably, they're useful for a lot of stuff in math and even physics (I've heard turbulent flow calculations can use them?) but they seem useless at first
Having watched all the veritasium math videos I feel like all the major breakthroughs in math were due to mathemicians playing around with numbers or brain teasers out of curiosity without a concrete use case in mind.
It’s crazy how engaging and well done Veritasium videos are and they’re just free to watch on YouTube.
The math fun fact I remember best from college is that Charles Boole invented Boolean algebra for his doctoral thesis and his goal was to create a branch of mathematics that was useless. For those not familiar with boolean algebra it works by using logic gates with 1s and 0s to determine a final 1 or 0 state and is subsequently the basis for all modern digital computing
Shoutout to Satyendra Nath Bose who helped pioneer relativity as a theoretical physicist because he didn't want to study something useful that would benefit the British.
George Boole introduced Boolean algebra, not Charles. Charles, according to this site on the Boole family, he had a career in management of a mining company.
Integration.
Integration was literally developed to be useful
Non-Euclidean geometry was developed by pure mathematicians who were trying to prove the parallel line postulate as a theorem. They realized that all of the classic geometry theorems are all different if you start changing that postulate.
This led to Riemannian geometry in 1854, which back then was a pure math exercise.
Some 60 years later, in 1915, Albert Einstein published the theory of general relativity, of which the core mathematics is all Riemannian geometry.
This won't make any sense to any of you right now, but: E = md^3^
That's a perfect example of a typical interaction between a Technology Management Consultant and somebody from a STEM area.
Techies with an Engineering background who are in Tech and Tech-adjacent companies are often in the receiving end of similar techno-bollocks which makes no sense from such "Technology" Management Consultants, but it's seldom quite as public as this one.
Oh god, the cringe.
A brain teaser about visiting all islands connected by bridges without crossing the same bridge twice is now the basis of all internet routing. (Graph theory)
I work with a guy who is a math whiz and loves to talk. Yesterday while I was invoicing clients, he was telling me how origami is much more effective for solving geometry than a compass and a straight edge.
I'll ask him this question.
My disclaimer: I don't know what any of this means, but it might give you a direction to start your research.
First thing he came up with is Number Theory, and how they've been working on that for centuries, but they never would have imagined that it would be the basis of modern encryption. Multiplying a HUGE prime number with any other numbers is incredibly easy, but factoring the result into those same numbers is near impossible (within reasonable time constraints.)
He said something about knot theory and bacterial proteins, but it was too far above my head to even try to relay how that's relevant.
I am pretty sure that the first thing you mentioned (multiplying being easy and factoring being hard) is the basis of public key cryptography which is how HTTPS works.
Somewhat related fun fact: One of the most concrete applications for quantum computers so far is breaking some encryption algorithms.
If I recall correctly, one mathematician in the 1800s solved a very difficult line integral, and the first application of it was in early computer speech synthesis.
the man you're thinking of is, I believe, George Boole, the inventor of Boolean algebra.