this post was submitted on 02 Mar 2025
73 points (100.0% liked)
Asklemmy
45414 readers
1432 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
How did you calculate that? The question didn't even mention a specific speed, just "near the speed of light".
The kinetic energy for a grain of sand near the speed of light is somewhere between "quite a lot" and "literally infinity" (which is, in a sense, the reason you can't actually reach light speed without a way to supply infinite energy).
Ke=1/2 M V^2 Not relativistic. So wildly low. But certainly a low bound. My point being that nuclear bomb grade energy is certainly in the ballpark.