this post was submitted on 11 Apr 2025
832 points (98.8% liked)
Science Memes
14276 readers
2538 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Someone did the math above.
https://old.lemmy.world/comment/16391357
So, a typical pupil is around 2 mm in diameter in bright conditions. With the Rayleigh limit that results in an angular resolution of 1.22 * 60010^-9 m / 210^-3 m = 3.66*10^-4 rad
At a distance of 5 x 3 mi = 15 mi = 24.1 km this corresponds to a point to point distance of
tan(a/2) = (d/2)/l
d = tan(a/2) * l * 2 = tan(3.66*10^-4) * 24100 * 2 = 8.8 m
So in conclusion, with regular, human-like eyes he could discern points that are at least 8.8 m apart in the best case scenario. Discerning hair color from the color of the clothes would need a much higher resolution, and the horsemen are probably not 10 m apart from each other either. And again, this is a theoretical limit, real-world resolution would probably be significantly lower.