this post was submitted on 04 Mar 2024
133 points (96.5% liked)
Showerthoughts
30476 readers
314 users here now
A "Showerthought" is a simple term used to describe the thoughts that pop into your head while you're doing everyday things like taking a shower, driving, or just daydreaming. The most popular seem to be lighthearted, clever little truths, hidden in daily life.
Here are some examples to inspire your own showerthoughts: 1
Rules
- All posts must be showerthoughts
- The entire showerthought must be in the title
- No politics
- If your topic is in a grey area, please phrase it to emphasize the fascinating aspects, not the dramatic aspects. You can do this by avoiding overly politicized terms such as "capitalism" and "communism". If you must make comparisons, you can say something is different without saying something is better/worse.
- A good place for politics is c/politicaldiscussion
- If you feel strongly that you want politics back, please volunteer as a mod.
- Posts must be original/unique
- Adhere to Lemmy's Code of Conduct
If you made it this far, showerthoughts is accepting new mods. This community is generally tame so its not a lot of work, but having a few more mods would help reports get addressed a little sooner.
Whats it like to be a mod? Reports just show up as messages in your Lemmy inbox, and if a different mod has already addressed the report the message goes away and you never worry about it.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I'm not familiar with what basal numbers means.
Anyway, 5555 is just one number in the decimal system that fulfills the requirement that the position of digits is irrelevant, whereas most decimal numbers do not. In the tally mark system all numbers fulfill this requirement.
However, the thing I like most about it is that you'll never need to prove that I+I=II. It literally is II.
I remember reading the book called "Gödel, Escher, Bach" which is about Gödels incompleteness theorem. At some point it comes across this kind of thing and demonstrates how any natural number is the successor of the previous number, basically defining numbers as tally marks. From there it goes on to demonstrate why math itself is incomplete. It's kinda a fat book, but if you're into numbers, logic and coding it's a must read.
Sorry "basal number" is something I just made up, I was trying to describe "numbers of a number system that uses a base". I thought I could save myself some writing, but I got too cute with it lol.
To me, unary seems like just the special case. For all positional number systems, as the base approaches 1, the number of irrelevantly-positional numbers predictably increases until it reaches 100%. It fits a pattern. And in a more meta view, 1 is a pretty common "special" or "trivial" case, along with 0, and infinity. I think it's a bit strange to say it doesn't belong in the set.
I'm not quite at the point where I'm gonna read a math book for fun, but there are these little pieces of math that are fascinating.
I hated discrete structures class in college. Nearly half the class dropped out, me included. Not because I was failing. I just couldn't give a damn. 1+1=2 is true for the same reason I+I=II is true. That's the whole concept of 2.