this post was submitted on 01 Jul 2025
450 points (98.7% liked)

Science Memes

15562 readers
3442 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 63 points 3 days ago (1 children)

Derivatives started making more sense to me after I started learning their practical applications in physics class. d/dx was too abstract when learning it in precalc, but once physics introduced d/dt (change with respect to time t), it made derivative formulas feel more intuitive, like "velocity is the change in position with respect to time, which the derivative of position" and "acceleration is the change in velocity with respect to time, which is the derivative of velocity"

[–] [email protected] 35 points 2 days ago (1 children)

Possibly you just had to hear it more than once.

I learned it the other way around since my physics teacher was speedrunning the math sections to get to the fun physics stuff and I really got it after hearing it the second time in math class.

But yeah: it often helps to have practical examples and it doesn't get any more applicable to real life than d/dt.

[–] [email protected] 4 points 2 days ago

I always needed practical examples, which is why it was helpful to learn physics alongside calculus my senior year in high school. Knowing where the physics equations came from was easier than just blindly memorizing the formulas.

The specific example of things clicking for me was understanding where the "1/2" came from in distance = 1/2 (acceleration)(time)^2 (the simpler case of initial velocity being 0).

And then later on, complex numbers didn't make any sense to me until phase angles in AC circuits showed me a practical application, and vector calculus didn't make sense to me until I had to actually work out practical applications of Maxwell's equations.